

M - 20	024
--------	-----

negister Number ;	Register Number :	effor	n of	15,00	180		
-------------------	-------------------	-------	------	-------	-----	--	--

Subject Code: 33

PHYSICS

Time: 3 Hours 15 Minutes] [Total No. of questions: 48] [Max. Marks: 70

Instructions:

- 1) All Parts are compulsory.
- 2) For Part A questions, first written answers will be considered for awarding marks.
- 3) Answers without relevant diagram/figure/circuit, wherever necessary will not carry any marks.
- 4) Direct answers to the numerical problems without detailed solution will not carry any marks.

PART - A

- I. Pick out the correct option among the four given options for all of the following questions: $(15 \times 1 = 15)$
 - 1) The dimensional formula of pressure is

a) $[MLT^{-2}]$

b) $[ML^2 T^{-2}]$

c) $[ML^{-1}T^{-2}]$ d) $[MLT^{-3}]$

2) A ball is thrown vertically upward and allowed to move freely under gravity, the a-t graph of the motion of ball is +a 1

_								in otion	
3)	In a projectile motio	n, th	e horizontal	an	ge is maximum to	r an	gie of	projection	
	a) 0°	b) 4		c)	60°	d)	90°		
4)	The product of force						A	- vetion	
	a) Force	b) -	Torque	c)	Impulse	d)	Accel	eration	
5)	The recoil of a gun								
	a) Mass	b) (Charge	c)	Energy	d)	Mome	entum	tore in
6)	The scalar product	two	vectors is zer	0 ($\vec{A}.\vec{B} = 0$), the ang	le b	etwee	n two vec	1015 15
	a) 00	h) 7	15°	C)	90°	a)	180		
7)	Consider a system of	of tw	o identical pa	rtic	les, one of the par	ticle	e is at r	est and o	li lei
	has an acceleration	ı 'a'.	The centre of	f m	ass has an accele	erau	OH		
	a) zero	b)	<u>a</u>	c)	a am anding ma a	d)	2a		
	rendered threshold								
8)	The value of gravita	ation	al constant is	80	C CZ v 10-11 Nm²	2 ka	-2		
	a) $6.67 \times 10^{-10} \text{ Nm}$	ne kç] ⁻²	D)	6.67 × 10 ⁻¹³ Nm ²	ka.	-2	回公回	
0)	c) 6.67×10^{-12} Nm Which of the following	ne Ko) - natoriale is/ar	u)	lose to ideal plast	ic?			
9)	(i) Putty	ing i	naterials 15/ai	HA	9				
	(ii) Mud							ck out the	
	(iii) Steel								
	a) (i) and (ii)	b)	(i) and (iii)	c)	(ii) and (iii)	d)	(i), (ii)	and (iii)	
10)	Dynamic lift due to	spin	ning of a ball	is	Danalaria offort				
	a) Magnus effect			q)	Torricelli effect				1-2
11\	c) Pascal's effect When a piece of iron	n is h	neated in a ho	u) t fla	me, it first become	es d	ull red	, then red	dish
11)	yellow and finally w	hite	hot. This phe	nor	menon can be exp	olair	ed by		
	a) Stefan's - Boltz	man	n's law	b)	Green house effe	ect			
	c) Wien's displace	men	t law	d)	Newton's law of	cool	ing	10700	and
12)	The efficiency of a C	Carn	ot's engine w	ork	ing between the te	emp	eratur T	es 127°C	anu
	27°C is			,	0.75	-1\	40	記録() 120日	
4.0\	a) 0.25		0.5		0.75	a)	1.0	A-B-	
	The total internal er								•
	a) $\frac{1}{2}K_{B}T$	b)	1 K _B T	c)	$\frac{3}{8}$ K _B T	d)	$\frac{5}{2}$ K _E	т	
							_		
14)	The motion which re		ats itself at re				called	(2)	
	a) Projectile motionc) Periodic motion			10.00	Curvilinear motion Non-periodic mo		1		
15)	The longitudinal wa		in a medium						
. 0)	a) Shear modulus		¥ 8-		Bulk modulus				
	c) Young's modulu	IS		7700	Both Shear and	Bull	k mod	ulus	

II.	follo (Su 16) 17) 18) 19)	in the blanks by choosing appropriate answer given in the brackets for all the owing questions: (5×1=5) Inface tension, 180°, Vector, Elliptical, 90°, Absolute temperature) A physical quantity having both magnitude and direction is called All planets move in orbits with sun situated at one of the foci. The spherical shape of a liquid drop is due to At constant pressure, the volume of a gas is directly proportional to its At rigid boundary, there is a phase difference of between incident and reflected wave.
		41) Prove law eigenservation of mechanical energy in case of freely falling bo
		PART – B
111.		wer any five of the following questions: (5×2=10)
	22) 23) 24) 25) 26)	Write any two rules of writing significant figures. A stone tied at one end of a string 80 cm long and is whirled in a horizontal circle with constant speed. If the frequency of revolution of stone is 2 Hz., then calculate magnitude of tangential velocity. Write any two advantages of friction. What are conservative and non-conservative forces? Mention the expression for kinetic energy of a rotating body and explain the terms. State and explain Newton's law of gravitation.
	28)	Mention any two factors on which thermal capacity of a body depends. State and explain first law of thermodynamics. Draw a graph of kinetic energy and potential energy of an oscillating particle with
		displacement.
		PART – C2 to soutille de la privom rinse
IV.	30) 31) 32)	Derive an expression for potential energy of a spring by graphical method. To maintain a rotor at a uniform angular speed of 120 rads ⁻¹ . Engine needs to transmit a torque of 180 Nm. What is the power required by the engine? Define: i) Longitudinal strain
		iii) Volume strain.
	36)	Distinguish between streamline flow and turbulent flow. On what factors does the rate of transfer of heat through a conductor depends? State and explain Boyle's law. Write Newton's formula for speed of sound in gas and give Laplace correction
		to Newton's formula.

PART - D

V. Answer any three of the following questions:

(3×5=15

- 39) Derive the kinematic equation of uniformly accelerated motion, $v^2 = v_0^2 + 2ax$, using v-t graph, where terms have their usual meaning.
- 40) Derive an expression for magnitude and direction of resultant of two vectors acting at a point.
- 41) Prove law of conservation of mechanical energy in case of freely falling body.
- 42) a) Define torque.

1

b) Obtain the relation $\vec{\tau} = \frac{d\vec{L}}{d\vec{L}}$.

4

43) a) What is isothermal process?

1

b) Obtain an expression for work done in isothermal process.

44) Show that a stretched string vibrates with all harmonics.

VI. Answer any two of the following questions:

 $(2 \times 5 = 10)$

- 45) A ship of mass 3×10^7 kg initially at rest is pulled by a force of 5×10^4 N through a distance of 3 m. Assuming that resistance of water is negligible, find the speed of the ship after travelling 3 m distance.
- Calculate the orbital velocity and period of revolution of an artificial satellite of the earth moving at an altitude of 200 km.

Radius of the earth = 6400 km Mass of the earth = 6×10^{24} kg $G = 6.7 \times 10^{-11}$ Nm² kg⁻².

- 47) A body cools from 80°C to 50°C in 5 minute. Calculate the time it takes to cool from 60°C to 30°C. The temperature of surrounding is 20°C.
- 48) A body oscillates with SHM according to the equation, $x = 5\cos\left(2\pi t + \frac{\pi}{4}\right)m$. At t = 1.5 s, calculate (a) displacement, (b) speed and (c) acceleration of the body.